
Encrypted Access Logging for Online Accounts:
Device Attributions without Device Tracking

Carolina Ortega Pérez∗

Cornell University
Alaa Daffalla∗

Cornell University
Thomas Ristenpart

Cornell Tech

Abstract
Despite improvements in authentication mechanisms, com-
promise of online accounts remains prevalent. Therefore, tech-
nologies to detect compromise retroactively are also necessary.
Service providers try to help users diagnose the security status
of their accounts via account security interfaces (ASIs) that
display recent logins or other activity. Recent work showed
how major services’ ASIs are untrustworthy because they rely
on easily manipulated client-provided values. The reason is a
seemingly fundamental tension between accurately attributing
accesses to particular devices and the need to prevent online
services from tracking devices.

We propose client-side encrypted access logging (CSAL)
as a new approach that navigates the tension between tracking
privacy and ASI utility. The key idea is to add to account
activity logs end-to-end (E2E) encrypted device identification
information, leveraging OS support and FIDO2-style attesta-
tions. We detail a full proposal for a CSAL protocol that works
alongside existing authentication mechanisms and provide a
formal analysis of integrity, privacy, and unlinkability in the
face of honest-but-curious adversaries. Interestingly, a key
challenge is characterizing what is feasible in terms of logging
in this setting. We discuss security against active adversaries,
provide a proof-of-concept implementation, and overall show
feasibility of how OS vendors and service providers can work
together towards improved account security and user safety.

1 Introduction

Protecting online accounts from compromise is critical to
user security. While increasingly sophisticated mechanisms
for authentication offer proactive security for accounts, in
some cases compromise cannot be avoided, and reactive so-
lutions are also needed. For instance, this is the case for at-
risk users [69], for whom attackers routinely compromise
accounts; a common example being abusive intimate partners
who have physical access to devices and/or who can compel

*Authors contributed equally to this work.

disclosure of authentication credentials (e.g., [39,45,60]). Ser-
vices cannot distinguish between such illicit and legitimate
client accesses (with existing methods), so users need to be
able to have insight into access to their accounts. Services
have tried to meet this need by deploying what Daffalla et
al. [39] refer to as account security interfaces (ASIs): web
pages or application screens that give users information about
accesses to their account, such as the set of devices with au-
thenticated sessions.

Current ASIs for online accounts have significant limita-
tions. They rely on untrustworthy information such as user
agent (UA) strings (configurable by users) or IP addresses
(changeable via VPN) to communicate to the account owner
what devices have been accessing the account. As shown
in [39], even for prominent services such as Google and Face-
book, adversaries can hide accesses completely from ASIs
or “spoof” ASI data to make accesses appear benign, thereby
undermining the secure attribution of accesses to particular
devices. This is not just bad implementations, but rather seem-
ingly fundamental: web and native clients on most platforms
cannot access static device identifiers such as serial or IMEI
numbers [54] to prevent malicious services from exploiting
them for user tracking (see, e.g., [35, 43, 47, 52, 55, 56, 61]).

The status quo is therefore that while the web architecture
does make device tracking harder, we simultaneously are leav-
ing users vulnerable due to missing, poor, or misleading ASI
data. This suggests the following question: Is it possible to
re-architect clients and services so that users can obtain trust-
worthy device attributions for accesses, but without enabling
device tracking by web services?

We initiate answering this open question, in particular by
exploring what we call client-side-encrypted access logging
(CSAL). At a high level, the idea is to associate with actions
logged by the service (e.g., logging in, changing a password)
an end-to-end (E2E) encryption of device identifiers. These
encrypted identifiers should be decryptable only by logged in
devices and not by the service provider.

In more detail, our approach to CSAL is as follows. Au-
thentication takes place between a client application (browser

with web app or native app) and a service, which we call the
relying party (RP). For current ASIs, a plaintext, RP-visible
client-to-service-to-client channel is used to communicate
access information between authenticated clients. We add an
E2E encrypted channel to communicate device identifiers be-
tween authenticated client devices. The channel’s endpoints
are not the clients, but rather a new type of OS service run-
ning on client devices that we call encryptors. The encryptor
can display ASI logs to users (like other OS interfaces listing
account information, e.g., [15]). We require OS support, but
as discussed above, this seems fundamental given the privacy
risks associated with revealing device identifiers to client apps.
Architecturally, our setup takes inspiration from FIDO2 [19].
That said, our approach is agnostic to the authentication pro-
tocol used by the RP and now provides integrity against client
devices offering spoofed data, which is missing from current
ASIs, while keeping tracking information private.

When authenticating with an RP, clients can request the
encryptor to generate a new CSAL session, which produces
fresh public keys along with a FIDO2-style attestation that can
be used to verify that the public key was generated by a trusted
OS vendor. The RP can relay attested public keys between
clients, who can in turn hand them to encryptors to verify
that they are from an allowed OS before encrypting device
identifiers using them. This approach provides strong security
for honest-but-curious (HBC) RPs, but an actively malicious
RP can try to add an endpoint — this will be detectable,
disincentivizing RPs from doing so. Moreover, we build into
our protocols the ability of encryptors to verify requests as
originating with particular RPs, meaning that OS vendors
could enroll only RPs that have procedural mechanisms in
place to prevent such bad RP behavior.

A key technical question is how to define correctness for
CSAL protocols. We could ask for full correctness: all device-
attributed actions are relayed to all authenticated clients. How-
ever, the approach outlined above does not ensure this: a client
that logs in, performs some actions, and logs out cannot per-
form the full back-and-forth key exchange required to transmit
its device information to future sessions. To understand if this
is fundamental, we formalize CSAL protocols with definitions
for correctness (even with adversarial client inputs, providing
a form of integrity), log privacy, and session unlinkability.
The privacy and unlinkability notions capture an HBC RP.

We first use this formal model to show that privacy and
full correctness are fundamentally at odds. An HBC RP can
break privacy for any fully correct protocol because, intu-
itively, communicating private information from an already
inactive session to a future session is impossible — the RP
knows the same as the future recipient. We then relax the
correctness goal via a graph-theoretic reachability condition
capturing how log entries should be recoverable by a client if
there was the possibility of any, even indirect, prior commu-
nication from the action-originating client. This correctness
condition assumes that the encryptor on a device can commu-

nicate privately “for free” between different sessions on that
device, including (for some period of time managed by the
encryptor) logged-out sessions.

Achieving this new better correctness therefore requires
taking advantage of the fact that sessions on a device can
communicate. Consider a device that has an old, logged-out
session and an active session. To achieve the new correctness,
the active session must relay key material for the old session
to active sessions on other devices. Doing so by only send-
ing (encrypted) secret keys when necessary would, however,
reveal to the RP that these two sessions were on the same
device, violating unlinkability. We resolve this by “smug-
gling” secret keys known to a session to other sessions, using
suitable amounts of dummy plaintext to prevent linkability at-
tacks. Putting it all together, we prove that our CSAL protocol
achieves the better correctness, log privacy, and unlinkabil-
ity against HBC RPs. We leave formalizing fully malicious
RP privacy and unlinkability to future work, but provide a
detailed, structured exploration of active attacks and how they
impact our CSAL protocol.

Finally, we provide a proof-of-concept implementation of
our CSAL approach and show that while it adds overheads,
they would not be prohibitive in practice. Our prototype is
available as a public, open-source project1.

Summary. In summary, we initiate an investigation into the
challenge of improving ASIs, which are critically important
for users facing attacks. In this work, we:

• propose CSAL protocols as a way to navigate the tension
between logging with device attributions and the privacy
threat of device tracking by RPs;

• formalize CSAL protocols and show that there are funda-
mental trade-offs between log privacy and log correctness;

• detail a full CSAL protocol and provide formal analyses
to prove that it achieves correctness, log privacy, and un-
linkability for honest-but-curious adversaries; and

• report on a proof-of-concept CSAL implementation.

Our implementation shows that CSAL protocols are efficient
enough for practice. Yet, deployment will require cooperation
between OS vendors and web service developers, which re-
quires buy-in, time, and standardization efforts. Hence we see
our main contribution as a feasibility result that new architec-
tures that enable better ASIs for users can be built. We close
with a discussion on limitations and deployment challenges.

2 Related Work

Now, we explore prior work on log and account security and
provide background on E2E encrypted applications.

System and access logs. System logs record important sys-
tem information such as system events, configurations, and

1zenodo.org/records/14737179

zenodo.org/records/14737179

resource usage. Logs provide a valuable view of past and
current states of almost any complex system. Among NIST-
suggested system and audit monitoring techniques is the pe-
riodic review of system-generated logs, which can detect se-
curity problems [67]. Because of their forensic value, system
logs represent an obvious attack vector. Thus, protecting these
logs (e.g., [62, 67]) and their integrity [30, 31, 58] has always
been one of the most critical tasks in a computer system.

Single-system logging schemes have been using symmetric
cryptography [30, 58,65], public key cryptography [51, 58],
tamper-resistant hardware [37,53], and identity-based encryp-
tion [63, 70]. Since all these focus on system logs for a single
system, they are not suitable for web account access logging.

Account security. Some prior work focused on increas-
ing authentication security. Works on two-factor authenti-
cation [5, 14], or, more recently, on passkeys [9, 10, 13] help
prevent phishing and brute-force attacks. However, they do
not address threat models where a malicious party might be an
abusive partner who has access to the user’s devices, or might
even share devices with them. Addressing this requires more
reactive measures to detect malicious activities post-factum.

To help users diagnose if a compromise has occurred, plat-
forms have deployed solutions such as email notifications [59]
and ASIs [39]. Detecting compromise of familiar devices is
hard. We focus on enabling more granular and integral ASIs,
but our solution works alongside email notifications.

Web account access logging. Current web services primarily
log accesses on the server side, and while a long literature
on authentication mechanisms seeks to ensure only users
holding the correct credentials (e.g., passwords or 2FA) can
log in, account compromise is still prevalent. Thus, services
complement authentication protocols with mechanisms to
inform users about access.

Hammann et al. [49] introduced a graph-based formalism
to evaluate the security and recoverability of online accounts,
and conducted a user study [48] of real-world user accounts
leveraging their formalism. But their work doesn’t address log-
ging accesses in a secure way to enable building their account
access graphs; which our CSAL approach could provide.

Daffalla et al. [39] showed that ASIs play an important role
in communicating to users about account accesses. They high-
light how this is particularly important for at-risk users, i.e.,
those who face an elevated risk of an attack on their digital
safety (e.g., survivors of intimate partner violence, journalists,
refugees, etc.) [32, 69]. At-risk users especially rely on the
ability to determine if and from where a compromise has oc-
curred. They also experimentally show that ASIs deployed by
popular services are vulnerable to spoofing and hiding attacks,
which undermine the integrity of these logs, limiting users’
ability to identify malicious accesses and account activity.

A recent work on securely logging web access is Larch [41].
It introduces a private login logging system design that forces
authentication to involve both a relying party (to be logged

into) and a separate third-party service called the login archive
service. They use split-secret authentication [66] where a se-
cret is shared between the archive service and the client to
enforce access logging. This approach cryptographically guar-
antees log entries for each login without modifications to the
relying party. However, Larch does not address device attribu-
tion, relying on client-provided (and often erroneous) names
for devices, nor does it allow for granular logging of post-
login actions, which are likely to be of forensic importance,
as victims of account compromise invariably want to know
what was done with illicit access [39].

E2E encrypted applications. A growing body of research
studies the design and analysis of E2E encrypted protocols
(e.g., [27, 36, 38, 44, 46]) and their use in various applications
(e.g., [6, 7, 12, 33]). At first glance, using an existing E2E
encrypted group messaging protocol like MLS [27], with each
device as a group member, might seem enough for encrypting
device identifiers. However, this fails in our setting because
group E2E messaging is designed for transient messages, with
granular forward secrecy. Thus new group members cannot
read old messages. We need a way of granularly giving them
access without breaking unlinkability. We believe one could
build CSAL starting from MLS, but (1) it would be more
expensive than our direct approach; (2) our negative results
from Section 5 still apply; and (3) work is needed to figure
out how to ensure proper functionality and security.

Secure cloud storage and encrypted backups end-to-same-
end architectures face some challenges similar to the ones
in our system. One of the main challenges is making crypto-
graphic secrets available across multiple devices while bal-
ancing usability and security. Some systems rely on human-
chosen PINs, with backup attempts limited by hardware secu-
rity modules [23, 40]; we avoid using PINs or other secrets
that users must memorize or store separately.

Meta recently announced [24] an encrypted storage pro-
tocol called Labyrinth for Facebook Messenger. It relies on
symmetric keys that rotate each epoch. New sessions learn the
current epoch for encryption but require some recovery key
material, which can be obtained using recovery codes, user-
chosen PINs, etc. In CSAL, the recovery of previous entries
is automatic, and doesn’t require additional interaction from
the user. This is especially important in our system because,
while Facebook’s sessions can be long-lived, we consider
other systems where sessions last only a day, as is the case
for many enterprise accounts.

3 Overview of Our Approach

In this section, we describe our approach to improving ASIs
via client-side access logging (CSAL). We explain the archi-
tecture, goals, and threat model.

Device tracking and ASIs. Current ASIs are easy to
spoof [39], so they do not provide integrity against mali-

cious clients. This makes them ineffective for distinguishing
whether a device’s activity is honest or malicious. To solve
this, our goal is to enable ASIs that provide granular informa-
tion to users about account accesses, ideally including static
device identifiers (e.g., device serial numbers) as they cannot
be spoofed and are easy to associate with a given device. This
way, ASIs would help users to identify their devices and ses-
sions and attribute actions to particular devices, which may
or may not belong to the user.

A key challenge with such granular ASIs is that such use-
ful access logging stands in tension with privacy under the
service-based device tracking threat model. Currently, web
services and mobile apps are restricted by browsers and
OSs from accurately identifying devices. This is on pur-
pose: allowing clients (web/mobile apps) to access static,
unique device identifiers would trivially enable device track-
ing (i.e., associating different requests to the same device).
This is a well-known threat model and decades of research
(see [35, 52, 56, 61]) and standardization have gone into ar-
chitecting the web to prevent RPs from maliciously tracking
users (e.g., for invasive targeted advertising). There is an on-
going shift away from the user agent strings current ASIs rely
upon; instead, browsers may only support client hints [16,22]
that only reveal to web services the features supported by
a client. Thus, the current trajectory is that future privacy
mechanisms will further degrade ASI utility.

We will resolve this tension by suggesting a new architec-
ture for handling ASI information, combining RP-oblivious
information with RP-visible information.

Client-side encrypted access logging. Our underlying in-
sight is that providing information for ASIs visible to users
doesn’t fundamentally require it to be visible to RPs. The
former occurs on the client, so we can handle sensitive infor-
mation, like device identifiers, in an RP-oblivious manner via
E2E encrypted channels. To describe our approach, we start
with a high-level abstraction of the architectural components
and information flows. We discuss practical realizations of
this architecture later.

In our architecture, we consider three entities: the rely-
ing party, the client applications, and the client OS. The
RP is remote and accessible from clients via standard en-
crypted network connections (e.g., HTTPS). Clients authenti-
cate to the RP in standard ways (e.g., password-based login,
passkeys [19], SSO [8]). Abstractly speaking, current ASIs
utilize a plaintext, RP-visible channel to communicate client
accesses information between authenticated clients. This in-
formation can include UA strings, other HTTP headers, public
IP addresses, and more. Our architecture retains this plaintext
channel. More broadly, our approach does not sacrifice any
existing functionality provided by the RP.

Where our design deviates from current practice is in
adding an E2E encrypted channel to transmit RP-oblivious
access information between the different authenticated client

devices. Because OSs do not trust client applications with
static device identifiers, the endpoints of our encrypted chan-
nel are OS services. We refer to these services as encryp-
tors, the name being reminiscent of the authenticators used in
FIDO2. The encryptors can also serve as decryptors, helping
populate an OS-managed ASI that communicates access logs
with device attributions to users. The UI design itself is out
of scope for this paper, and future work will be needed to
develop good ASI design patterns.

System goals. One overarching goal is to ensure that logging
does not reduces service functionality or forces adoption of
new authentication protocols. Thus, we want our system to
work alongside existing RP-provided functionality and au-
thentication mechanisms, and to operate in the background
without interfering with user experience. The only change is
that the ASI will be OS-based (e.g., accessible through an
account security UI in a settings app) rather than web- or
native-client based.

Our security goals are twofold: privacy and integrity of the
access logs. We focus on computationally-limited adversaries.
While our formalism focuses on an HBC RP, we discuss
mitigations against malicious RP activities in Section 6. From
the client side, we target both, UI-bound adversarial users and
malicious client software. We assume the OS is trusted, as it
already knows the information we want to keep private. We
assume secure communication channels (e.g., HTTPS) exist
between clients and RPs. This prevents attacks by traditional
network adversaries that intercept communications.

Privacy: One of our primary security goals is to prevent
RPs and application clients from accessing privileged infor-
mation sent via the encrypted channels. In particular, static
device identifiers that we will associate with log entries. A
system achieves log privacy if even in the face of malicious
clients and RPs, the logs’ encrypted content remains private
from the relevant parties. A related goal is unlinkability: pre-
venting the RP from detecting whether two logins come from
the same device. Unlinkability is also relevant for malicious
clients in the sense that client software that gets uninstalled
and then reinstalled on a device should not be able to distin-
guish this case from being installed on a new device.

As mentioned in the introduction, a malicious RP might
seek to add a malicious end-point and violate log privacy. This
will always be possible in our setting since the RP controls
account authentication. To defend against such attacks, our tar-
get is to ensure that endpoints receiving plaintext log entries
are detectable to other clients. This is the same level of guar-
antee achieved in practice by most E2E encrypted messaging
systems. We discuss this threat further in Section 6.

Integrity: One motivation is ensuring that malicious users
can’t hide accesses or spoof how their devices are identified
by ASIs. We refer to this as preserving log integrity: pro-
tecting the content of the logs from being manipulated by a
malicious user, client, or RP. As we will see, by design, logs

will combine plaintexts provided by the RP, client, and OS.
An actively malicious RP or client will be able to modify
respective plaintext portions (with some limits on clients, dis-
cussed Section 6), so here the guarantee is simply that the the
OS-provided plaintexts have integrity, allowing among other
things attributing such log entries to a particular device. Note
that one fundamental limit in our setting is that an actively
malicious RP—which, in our setting, controls all messages
passed between clients—can always split the view of different
clients, and we can at best ensure that those clients can detect
inconsistencies should future messages be passed between
them. A related goal is session authenticity, meaning RPs or
the application client cannot impersonate other sessions.

Non-goals: A malicious RP can always deny service to
clients; it does not even need to deploy support for CSAL in
the first place. So we do not target availability. Given that we
are building a logging system, not an ephemeral messaging
system, we need content, and the keys to recover it, to be avail-
able on clients for a given system-defined duration. Therefore,
standard forward secrecy and post-compromise security goals
from E2E encrypted messaging settings (e.g., [26, 34, 38]) do
not apply here. At last, ASIs are dual-use technologies; while
they help legitimate users detect malicious activity in their ac-
counts, they could also enable an attacker that compromise an
account to monitor the owner. As argued in [39], the forensic
benefits to victims should outweigh the potential risks, but we
leave exploration of how different types of ASI data impact
abuse scenarios to future work.

4 A Full CSAL Protocol

In this section, we describe a full CSAL protocol Ψ, including
the interactions between OS, clients, and RPs.

Cryptographic primitives. Our CSAL protocol uses a few
standard cryptographic schemes. We use public-key encryp-
tion (PKE) in a key transport kind of mode, and digital signa-
tures (DS). When encrypting, we always sign as well. We de-
note this by the notation {N,M}sskepk, which means encrypting
M under public key epk and signing the resulting ciphertext
along with some associated data N . In more conventional no-
tation this would be written as Sign(ssk,N ∥Enc(epk,M))
(note that this is randomized). We also combine signature veri-
fication and decryption: for a ciphertext C←$ {N,M}sskepk, de-
cryption takes in the verification key spk, the decryption key
esk, and C. It returns the message: M ← Dec(spk, esk, C).
For simplicity, we assume C includes N . We denote signing
a message by {M}ssk. We also use symmetric encryption,
specifically, authenticated encryption with associated data
(AEAD) and sign AEAD ciphertexts. So {N,M}sskK means
Sign(ssk,N ∥AE(K,N,M)), where N is treated as AD and
also signed (in case AE is not context committing [29]). Sim-
ilarly, decryption implicitly includes verification and takes
three values as input M ← Dec(spk,K,C). We use variable

name conventions (K vs. epk) to distinguish AEAD versus
PKE. Each session will be associated with a freshly generated
PKE key pair, DS key pair, and secret key K, we denote gen-
eration of these keys as ((epk, esk), (spk, ssk),K)←$ Kg.

Session initialization. We start by describing how our CSAL
protocol Ψ initializes a new session on a client (also referred
to as login algorithm or L). A detailed diagram of session
initialization appears in Figure 1. We assume a standard user-
name, password authentication protocol and defer details on
other authentication mechanisms to later in this section. A
session here corresponds to an HTTP(S) session, which is
managed using cookies. A session is active as long as it has a
valid cookie, whether it is online or offline. The duration of
a session corresponds to the lifetime of a persistent cookie
as set by the RP, and as retained by a client — we discuss
session lifetime further towards the end of the section. Our
CSAL session lifetime is similarly defined.

Our protocol proceeds in two stages. First, a client, call
it A, performs a standard authentication with the RP. In our
running example, this would be submitting a username and
password to the RP, followed by verification of these sub-
mitted values. If verification fails, the client receives a login
failure notification. Otherwise, the RP generates a message
consisting of (1) a short-lived cookie (indicating that the au-
thentication succeeded); (2) a challenge N that should never
repeat; (3) a parameter string indicating the RP-supported
cryptographic algorithms; (4) the RP’s certificate CERTrp
(containing a signing public key for the RP); (5) a (possibly
empty) set of public keys PK = {pk1, pk2, . . .} associated
to other sessions (on other devices or, possibly on this de-
vice) along with the values2 needed to check their attestations
(which are stored by the RP in a table TCERT); (6) a table
TKEM of previously received PKE ciphertexts (used for key
transport); and (7) a signature over the resulting message
σreq = {N ∥ params ∥CERTrp ∥PK ∥TKEM}skrp .

The client stores the cookie and then makes an API call
to the device’s encryptor service for session initialization,
passing to the encryptor all the (non-cookie) components of
the RP’s response (N, params, CERTrp,PK, TKEM, σreq). It
also includes in the call a byte string CL of client-provided
information that should be associated with the session in the
log (e.g., browser version or other details about the client
software instance provided by the client itself).

The encryptor checks the validity of CERTrp and uses it to
verify σreq. It also checks that all the keys in PK have valid
attestations. If so, the encryptor creates a new session ID sid,
unique across all sessions for the user (a sufficiently large
random value), and performs four further tasks:

• Session key generation: The encryptor checks that it sup-
ports the cryptographic algorithms acceptable to the RP,

2For notational brevity, we slightly abuse notation and let PK denote
both the public keys, attestation signatures, and associated certificates. We
assume algorithms can parse this appropriately.

Encryptor
(skA, CERTA), TCL

Client A
Relying Party

TCERT, TLOG, TOLD, TKEM,
skrp, CERTrp

Request login(usr, pw)

Verify usr, pw, generate N
PK ← active public keys, attestations for usr

σreq = {N ∥ params ∥ CERTrp ∥PK∥TKEM}skrp

COOKIEtmp, N, params, CERTrp,PK, TKEM, σreqN, params, CERTrp,PK, TKEM, σreq, CL

Verify CERTrp, σreq, PK
Generate sid
((epksid, esksid), (spksid, ssksid),Ksid)←$ Kg
pksid, sksid ← (epksid, spksid), (esksid, ssksid)
PK′ ← PK ∪ pksid
TCL.ADD(RP, usr, sid, pksid, sksid,Ksid)
σ←$ {sid ∥ pksid ∥N}skA

For epki ∈ PK′: Ckem ← Ckem ∪ (Ckem,sid,i,sid←$ {N,Ksid}
ssksid
epki

)

Cdem←$ {N, OS ∥ CL}ssksid
Ksid

For (i, j, pkk, Ckem,i,j,k) ∈ TKEM :
If pkk ∈ PK′ and (i, ∗) ̸∈ K and (RP, usr, j, ∗, ∗, ∗) ∈ TCL:
Ki ← Dec(pkk, skj , Ckem,i,j,k)
If Ki ̸= ⊥ then K ← K ∪ {(i,Ki)}

Cold←$ {N, pad(K)}ssksid
Ksid

sid, pksid, CERTA, σ, Cdem, Ckem, Cold sid, pksid, CERTA, σ, Cdem, Ckem, Cold, COOKIEtmp

Verify COOKIEtmp, σ, Cdem, Ckem, Cold

TCERT.ADD(sid,N, pksid, CERTA, σ)
TOLD.ADD(sid, Cold)
For Ckem,sid,i,sid in Ckem:
TKEM.ADD(sid, i, pksid, Ckem,sid,i,sid) to TKEM

TLOG.ADD(sid, Cdem, RP)COOKIEsid

Store COOKIEsid.

Figure 1: CSAL protocol Ψ login flow (L). If any server-side verification fails, the relying party deletes the relevant COOKIEtmp

and returns ⊥. The values OS, CL, and RP are plaintext log entry byte strings generated by the encryptor, the client, and the
relying party, respectively. We use the symbol ‘∗’ to represent matching any value.

defaulting to some default cryptographic algorithms if not.
It then uses one of these algorithms to generate new keys
for encrypting and signing:

(epksid, esksid), (spksid, ssksid),Ksid←$ Kg .

Let pksid = (epksid, spksid). The new public key is added
to the public key set viaPK′ = PK∪{pksid}. The encryp-
tor creates a new entry in a table TCL that records the RP,
the user, the sid, and the new keys. It also sets a timeout
on the keys, after which it should delete them.

• Session key attestation: The encryptor also generates an
attestation for the new session public key pksid. We denote
this by σ←$ {sid ∥ pksid ∥N}skA . A vendor-specific at-
testation certificate CERTA can be used to verify that the
session public key was generated by an encryptor service
associated to a known vendor (but not to a specific device).
For σ and CERTA, we rely on FIDO2-style attestations,
which we discuss below.

• Encrypted entry generation: The encryptor encrypts the
key Ksid under each pki ∈ PK′, which we denote
by Ckem,i := {N,Ksid}ssksid

pki
. Additionally, the encryp-

tor generates an initial encrypted log entry Cdem :=

{N, OS ∥ CL}ssksid

Ksid
, where OS is a byte string that can in-

clude static device identifiers (e.g., a device serial number).

• Smuggling ciphertext: The encryptor’s last task is to check
if it has access to any secret keys Ki from prior sessions.
It loops over the KEM ciphertexts in TKEM, checking if it
can decrypt them using keys previously generated by this
device. Naively, this would be expensive, since TKEM grows
quadratically in the number of sessions, but TKEM has only
|PK| different encrypted session keys. The resulting secret
keys are collected into a set K that is then padded to a size
fixed by the number of current sessions m = |PK′| and
encrypted via Cold←$ {N, pad(K)}sskKsid

.

The encryptor then returns to the client the tuple

sid, pksid, CERTA, σ, Cdem, Cold, Ckem,1, . . . , Ckem,m .

The client sends this to the RP, along with the temporary
authentication cookie. The RP does validity checks, verifying
the attestation (see below) and the signatures. It also ensures
the number of KEMs is correct. If all checks pass, login is
complete, and the RP sends a new session cookie to the client.

The RP inserts (sid,N, pksid, CERTA, σ) into a sessions
table TCERT; inserts (sid, Cold) into a table for “smuggled”

old session keys TOLD; inserts each Ckem,i into the table for
KEMs TKEM (with information of who encrypted, to whom,
and who signed the KEM); and finally inserts (sid, Cdem, RP)
into a table TLOG for encrypted log entries. Here RP is plaintext
data that the RP wants to associate with this session (e.g., UA
string, client IP address). The RP adds pksid to its set of active
public keys associated to active sessions.

This login procedure requires two round trips to the RP,
whereas username, password login requires just one. While
it’s tempting to merge into a single round trip, this would
require sending PK to an unauthenticated client, revealing to
arbitrary malicious clients the number of active sessions at
the RP. Whether we can improve performance here is an open
question, but we expect that in practice as login is infrequent
the extra round trip will not be prohibitive.

Attestations. We use OS attestations to ensure encryptors
are not being impersonated by actively malicious clients or
RPs (such as a compromised browser). At the same time, we
don’t want certificates from these attestations to allow device
fingerprinting (see unlinkability in Section 5 and full version).
We adopt FIDO2-style attestations, because they have similar
user tracking prevention goals. For example, FIDO2 recom-
mends that authenticator manufacturers ship authenticators in
batches and that these batches are sufficiently large. Authenti-
cators in a batch share the same attestation certificate and thus
include all those devices in a single anonymity set [17]. Al-
ternatively, they can implement a surrogate attestation model
using the authentication key itself to sign or the direct anony-
mous attestation (DAA) protocol [2, 4]. To verify an attesta-
tion, RPs verify the formatting of the attestation statement
and the attestation certificate chain.

“Smuggling” old session keys. The login protocol includes
a ciphertext Cold that encrypts as many old session keys for
which the current client device has access. We refer to this
as “smuggling” these secret keys, since we’re hiding from the
RP the fact that this client session has access to these keys.
Smuggling is important for correctness, in particular helping
us ensure that new sessions on a device can help other devices
access the log data for old sessions.

To explain, consider a setting where a user needs to re-
authenticate each day with the RP; authenticated sessions only
last 24 hours. The user normally uses a primary device A, but
occasionally logs in from a second device B. Then it is likely
that this user rarely has multiple sessions authenticated at the
same time. While device A, which has access to the secret
keys for prior sessions from A, could recover them, device B
won’t be able to recover old sessions from A even if A and B
both have an active session during the same time period.

This is where Cold comes into play. By encrypting old
session keys to which A has access, and also encrypting to
all active sessions the current session’s secret key, the session
on B can see the entire history. Of course if A is never active
at the same time as B, this won’t work. In fact, in Section 5

we prove that this is a fundamental limitation in our setting
where one must perform a key exchange to make encrypted
logs accessible to a new client.

Note that the client always prepares a Cold of the same size
(by way of pad), regardless of how many session secret keys
the client can recover. Omitting it or reducing its size would
mean the RP can distinguish between sessions initiated from
a fresh device versus an old one. Smuggling does use up some
bandwidth as TKEM can grow to be quadratic in m (the active
number of sessions) and Cold is linear in m. Whether this can
be improved (or proving it can’t be) is a good open question.

Action logging. Once a session has been initialized, the client
can generate log entries in response to user (or other) actions.
For example, if a user wants to change their authentication
methods, the client can log this action in the background. The
granularity of logged actions is up to the RP.

The protocol for action logging (N) is essentially identi-
cal to the second phase of session initialization, because the
client is assumed to have an authenticated session. Figure 4
in Appendix A shows the action logging protocol flow. The
RP first generates a new challenge N and a request signature
σreq = {sid ∥N}skrp. It sends (sid,N, σreq) to the client. To
perform an action, the client first forwards that information
along with CL to the encryptor. Notice that our protocol tol-
erates lag between receiving (sid,N, σreq) and it being used
by the client, which allows the RP to stage fresh challenge re-
quests with the client (e.g., embedded in the change password
HTML) to avoid needing two round trips over the network.

Upon receiving the request, the encryptor verifies σreq. It
then generates the OS information string OS and ciphertext
Cdem←${N, OS∥CL}ssksid

Ksid
. It returns Cdem to the client, who

forwards (sid, Cdem) to the RP along with the action request
(e.g., the HTTP request with old and new passwords). Similar
to session initialization, the RP verifies the digital signature
in Cdem, checks N , and logs a new entry (sid, Cdem, RP)
in TLOG. The value RP is as before RP-provided plaintext
information about the logged action, e.g., “password change”.
Finally, the RP may reject a log entry based on its application
logic: if an action such as changing the password fails (the
client tried to use a disallowed password), the RP can discard
the log entry since the action was not, in fact, taken.

Periodic re-encryption. As described so far, only login en-
ables performing key exchange between clients. Our solution
is to include a periodic re-encryption (R) mechanism that
allows older sessions to grant newer sessions access to (their
or other clients’) symmetric keys. One can view this as a sim-
ple gossip protocol for sharing the secret key Ksid associated
with a session. As it will be somewhat expensive, we decouple
this from logging actions which are on the critical path for
user experience, and instead let RP decide the pace at which
re-encryptions occur in the background.

Conceptually, the goal is to have all active sessions receive
the secret keys used by all the other active sessions. Letting m

be the number of currently active sessions, consider an m×m
matrix whose rows and columns correspond to session IDs
α1, . . . , αm. Cell i, j is either empty or has a KEM ciphertext
Ckem,i,j,k = {N,Ki}sskk

pkj
for some k ∈ [1..m]. In words,

each entry is a KEM encryption of the secret key associated
to the session indicated by the row i, to the public key of the
session indicated by the column j. The KEM ciphertext is
produced by some session associated with the index k. During
a login, a new row and column m+1 are added, and the KEM
ciphertexts submitted fill out the row for all columns with
entries where k = m+1. So if we add a sequence of sessions
with no further activity, the matrix is a lower triangular matrix,
and no session j can read log entries from a session i < j
(ignoring, for now, smuggled session keys).

Towards distributing session keys further, we utilize a syn-
chronization mechanism that works as follows. Periodically,
clients communicate with the RP, via what we refer to as sync
or re-encryption requests (Figure 5 in Appendix A), even if
they are not logging any action. A sync request doesn’t pass
any additional information to the RP (beyond session cookies
required to authenticate it); here we assume the RP can look
up the session ID associated to the request, call it l, which
we will use interchangeably as an index of its row/column
number in the matrix. The RP then investigates the current
matrix, looking for any cells [i, j] that are empty (j does not
yet have the key for i) but for which [i, l] is non-empty (l
has the key for i). The RP then generates a re-encryption
request message that includes, first, a fresh challenge N .
This is followed by a list L of re-encryption request tuples
(i, j, pkk, Ckem,i,l,k), where k whichever session shared Ki

with session l (if shared during login, k = i) and Ckem,i,l,k

is the associated KEM. Finally, the RP generates a request
signature σreq = {sid ∥N ∥L ∥TCERT}skrp .

The client passes this request on to its encryptor, which first
checks the request signature validity. Then for each tuple in
L, it checks the certificates and public key attestations. It then
decrypts (and verifies) Ckem,i,l,k to recover Ki, and finally
generate a new KEM ciphertext Ckem,i,j,l = {N,Ki}sskl

epkj
.

The encryptor returns a list of the resulting KEM ciphertexts
LKEM, which the client sends back to the RP to update TKEM.

As more sessions come online, they can pass along secret
keys via re-encryptions. Notice that when one session gains
access to the secret key of an active session, it also gains
access to session keys smuggled by that session (if any).

Retrieving logs. A client can request that logs be retrieved
and shown to the user (history algorithmH). A diagram ap-
pears in Figure 6 in Appendix A. To explain, an authenticated
client, such as A in our example above, sends a request to the
RP to fetch the encrypted logs. The RP returns the identifier
sid, the tables TCERT,TOLD, and TLOG, and the column of KEMs
from TKEM for that user. Denote the latter by TKEM[∗, sid]. It
also signs the information it is sending via

σreq←$ {sid ∥TCERT ∥TOLD ∥TLOG ∥TKEM[∗, sid]}skrp .

The client then makes a history API call to the encryptor
service, passing along all the values. The encryptor verifies
the attestation and keys and then performs three actions:

• Encapsulated keys recovery: Using the verification keys
in TCERT and the account’s secret keys, the encryptor de-
capsulates each KEM available in TKEM, by verifying the
signatures over the keys, the KEM, and then decrypting
the ciphertext. It aggregates the account’s symmetric keys
and the newly recovered key into a set of keys K.

• Smuggled keys recovery: The encryptor traverses TOLD

from the last to the first entry, verifies and decrypts any ci-
phertext it can, using keys in K, ignoring dummy padding.
Any recovered smuggled keys are added to K before mov-
ing on to the next ciphertext.

• Log entry recovery: The encryptor goes over the entries in
TLOG, verifies each entry’s signature and, if valid, decrypts
the entry with the appropriate key in K. Then, it assembles
a record for that entry (RPi, CLi, OSi) and adds it to an
ordered list T of these log entry tuples. If it cannot decrypt
the entry, it adds instead (∗, ∗, OSi) to T .

These plaintext logs are then shown to the user via a privi-
leged OS interface. We cannot return decrypted logs to the
client; this would enable malicious client software to learn
static identifiers such as serial numbers included in OS entries.
Thus, we suggest that the ASI data be shown via OS-managed
interfaces, e.g., within an account security page within a sys-
tem settings app. Future work will be required to determine
how to build a usable interface for logs, e.g., via user studies.

Session termination. Sessions can terminate for a variety
of reasons. A session may be explicitly terminated because
the user asks the client to logout, in which case, the client
performs an API call to the encryptor to record that the session
has ended, and can also notify the RP about the termination.
Sessions may also time out or be remotely ended (e.g. log
out through other devices). In these cases, the RP refuses
further updates from that session. A user may also delete
cookies without notifying the RP. Like in normal web session
management, the RP will retain information in the session
table until that session times out.

We set two configurable parameters: maximum session
duration ∆sess and log visibility duration ∆log . For example
∆sess = 90 days is a standard timeout used in web session
management; the user must log in again after ∆sess days. For
∆log , applications can configure how long log files should be
retained. No matter how a session sid ends, for correctness,
the encryptor and the RP retain the table entries associated
with sid for ∆log +∆sess after it becomes invalid. This en-
sures that no other active session requires any information
provided by sid to recover a key or log entry.

Other authentication mechanisms. In our example above,
we used standard password-based login. But our protocol is
agnostic to authentication mechanisms, requiring just that the

RP first performs authentication (whether it be via password,
passkey, TOTP, MFA, etc.) before generating the CSAL login
challenge. Thus, it is plug-and-play with existing protocols.

One potentially confusing point is that our encryptor archi-
tecture is modeled after the authenticator architectures used
in FIDO2 [17]. But in a deployment, these would be distinct
protocol flows and must happen sequentially (first authen-
ticator flows, then encryptor). That said, eventual standards
and implementations might target unifying encryptors and
authenticators, e.g., by extending the client-to-authenticator
(CTAP) protocol [1] to include a CSAL encryptor API so that
a single OS service could handle both.

5 Formal Treatment of CSAL

In this section, we introduce a formal model for CSAL proto-
cols. Our goals are twofold: (1) to explore basic, fundamental
limitations on client-side encrypted logging in our setting
and (2) to initiate rigorous security analyses for CSAL proto-
cols. We start by formally defining CSAL protocol syntax and
semantics, followed by security notions including integrity,
privacy, and unlinkability. We then show an impossibility
result that integrity and privacy cannot be achieved simultane-
ously. Next, we show that we can relax the integrity notion in
order to avoid the negative result, and finally prove that our
CSAL protocol Ψ (from Section 4) simultaneously enjoys
privacy, unlinkability, and this relaxed notion of integrity.

CSAL protocols. We consider client-server CSAL proto-
cols consisting of initialization, action logging, re-encryption,
and history protocols between a client and the RP. We model
passive adversaries that observe message transcripts and in-
termediate values, but do not deviate from protocols (i.e., are
semi-honest or honest-but-curious) — see the next section for
a discussion on fully malicious adversaries. Our formalization
takes inspiration from the literature on two-party computation
secure against HBC (or semi-honest) adversaries that can cor-
rupt some inputs (e.g., [50]). Thus, each algorithm captures
the full execution of the relevant client-server protocol.

Formally, a CSAL scheme Π = (Is, Ic,L,N ,R,H) is a
tuple of six algorithms. The RP initialization algorithm Is
and the client initialization algorithm Ic take no inputs and
output an initial RP and client state, respectively. The other
four algorithms capture login (L), action (N), re-encryption
(R), and history (H). Each takes a pair of inputs, one tuple
from the client and one tuple from the RP. Login outputs a
fresh session ID sid and updated client and RP states. The
action and re-encryption algorithms outputs a new client and
RP state. The history algorithm outputs a transcript T con-
sisting of tuples3 (t, sid, OS, CL, RP) indicating a transcript
entry type t ∈ {INIT, ACTION, REENC}, a session ID, and

3Note that in the prior section we only output the last four values: in
practice the other records should indicate the entry type, but it’s convenient
for defining security to not make that assumption here.

L((stclt, OS, CL), (strp, RP)) :

01 (TCERT, TLOG, TOLD, TKEM)← strp // RP challenge generation

02 For row in TCERT:

03 (i, Ni, pki, CERTi)← row

04 PK ← PK ∪ pki

05 N ←$ {0, 1}n

06 (skA, CERTA, TCL)← stclt // Encryptor response

07 sid←$ {0, 1}n

08 ((epksid, esksid), (spksid, ssksid),Ksid)←$ Kg
09 (pksid, sksid)← (epksid, spksid), (esksid, ssksid)

10 PK ← PK ∪ pksid

11 For pki ∈ PK: Ckem,sid,i,sid←$ {N,Ksid}
ssksid
pki

12 Cdem←$ {N, OS ∥ CL}ssksid
Ksid

13 For (i, j, pkk, Ckem,i,j,k) ∈ TKEM

14 If (j, ∗, ∗, ∗) ∈ TCL:

15 Ki ← Dec(pkk, skj , Ckem,i,j,k)

16 If Ki ̸= ⊥ then K ← K ∪ {(i,Ki)}
17 Cold←$ {N, pad(K)}ssksid

Ksid

18 Add (sid, pksid, sksid,Ksid) to TCL

19 stclt ← (skA, CERTA, TCL)

20 Add (sid,N, pksid, CERTA) to TCERT // RP receiving response

21 Add (sid, Cold) to TOLD

22 For pki in PK: Add (sid, i, pksid, Ckem,sid,i,sid) to TKEM

23 Add (sid, Cdem, RP) to TLOG

24 strp ← (TCERT, TLOG, TOLD, TKEM)

25 Return (sid, stclt, strp)

Figure 2: Client-server session initialization for our protocol
Ψ as a single algorithm L. We omit some active-attack coun-
termeasures that are irrelevant to our analyses for brevity.

the plaintext entries. In some cases plaintext entries can be
missing, which we denote with the symbol ‘∗’. For simplicity,
we assume that history does not modify the client or RP states;
it is easy to modify our treatment to allow such modifications.

To make all this concrete, we describe a simplified version
of our protocol Ψ from Section 4 omitting some elements for
brevity (such as signatures and their verifications) that are not
relevant to our analyses. Pseudocode for the login algorithm
appears in Figure 2. Due to space constraints we relegate the
other algorithms to Appendix B.

CSAL log integrity. We formalize correctness as a secu-
rity property, meaning it holds even for a client choosing
adversarial sequences of interactions. Figure 3 gives a pseu-
docode game capturing log integrity security for a CSAL
scheme. In our games, all counter variables are implicitly ini-
tialized to zero, tables to be everywhere ⊥, and bit strings to
be empty. The game LIS is parameterized by a CSAL scheme
Π = (Is, Ic,L,N ,R,H), a pruning function prune, and an
adversary A. Looking ahead, prune is a way to modify the
level of integrity guarantee that a CSAL scheme must achieve.

The game allows the adversary A to initiate new clients
via an InitClient oracle. The adversary can then instruct each
client to perform a new login to initiate a new session for that
client, have the client perform an action within a session, ask
it to perform a re-encryption, or have it access its history. The
game keeps track of an ideal transcript T ∗, which corresponds
to the sequence of client logins and actions. It is a list of tuples
of the calls in the game, including for which clients and what
sessions, as well as the adversarially-input encryptor, client,
and RP plaintext log strings.

Along the way, the CSAL protocols are executed — their
goal is to similarly keep track of this transcript T . A single
RP instance is maintained throughout, by way of updates to
a common state strp that is updated with each RP invocation.
Note that all variables in the game are global, but not directly
accessible to the adversary except for what is returned by pro-
cedures explicitly. This captures adversaries that can monitor
all state on the client side.

When the adversary calls the History oracle, specifying a
particular client and session via the parameters c, sid, we run
the CSAL’s history routine. We then compare its output T , to
the ideal transcript T ∗, after processing each entry on T ∗ with
the transcript pruning algorithm prune(T ∗, sid). The latter
outputs an ordered list of entries (ti, sidi, OSi, CLi, RPi).

As mentioned above, pruning functions control the level of
integrity required of a scheme. At one extreme, if prune out-
puts nothing, then integrity is trivial to achieve. At the other
extreme, if prune simply processes each T ∗ entry by remov-
ing the client identifier, it requires that the CSAL protocol
can ensure History outputs information on every single login
and action—a strong guarantee that, as we will see, cannot be
achieved by CSAL schemes that provide log privacy. We refer
to this latter pruning function as the identity pruning function,
denoted by pruneId. Later in the section we will define other
pruning functions that lie between these two extremes.

The adversary wins if the client’s history does not match the
pruned, ideal transcript. We define the LISΠ,prune-advantage
of adversary A as the probability that it can win the game:

Advlis
Π,prune(A) = Pr [LISΠ,prune(A)⇒ 1]

where the probability space is defined over the random coins
of the game and A.

Definition 5.1 A. We say that a CSAL scheme Π is ϵ-correct
for prune if for all LISΠ,prune-adversaries A it holds that
Advlis

Π,prune(A) ≤ ϵ.

CSAL privacy from RPs. We are interested in CSAL
schemes that preserve the privacy of device identifiers from
the RP. To formalize this, we use a left-or-right privacy no-
tion that tasks an adversary with distinguishing between tran-
scripts of the protocol applied to one of two randomly chosen
sequences of log entries. The privacy security game is shown
in Figure 3. The game starts by choosing a challenge bit b,

initializing the RP’s state strp, and then running the adver-
sary who gets access to the strp and to oracles for client
initialization, logins, actions, and re-encryption. For the login
oracle, the adversary queries on a client c, two chosen device
plaintexts OS0, CL0 and OS1, CL1, and the RP plaintext log
entry RP. For the action oracle, the adversary queries on a
session identifier, two pairs of client-side log entries, and a
RP plaintext log entry. The CSAL login and action algorithms
are executed using one of the two identifiers chosen based on
the challenge bit b. The adversary receives the new session
ID sid and updated RP state strp. We require queries are such
that |OS0| = |OS1| and |CL0| = |CL1|.

The adversary can also invoke re-encryption queries for
adversarially-chosen client and session. The adversary does
not have the ability to query a history oracle — this would
lead to trivially violating log privacy. See Section 6 for more
discussion of this threat model in which an RP colludes with
a malicious client.

We define the PRIVΠ-advantage of an adversary D as the
probability that it outputs 1, namely:

Advpriv
Π (D) = 2 · Pr [PRIVΠ(D)⇒ 1]− 1 .

The probability space above is defined over the random coins
of the game and D.

CSAL unlinkability. Due to space constraints, we formalize
an unlinkability security game in Appendix C. There, the
adversary must distinguish between sessions from different
versus the same client. We prove our scheme Ψ achieves it in
the full version of the paper.

Privacy limits integrity. There is an inherent tension be-
tween log integrity and privacy. Intuitively, no private scheme
can ensure that all clients have the same view of the tran-
script T : in our setting, where clients do not shared secrets
before communicating, they need to somehow exchange cryp-
tographic key material in order to communicate privately. We
have the following theorem (see full version for proof).

Theorem 5.1 Let Π be an CSAL scheme that is ϵ-correct for
the identity pruning function pruneId. We give D, a PRIVΠ-
adversary, such that 1−2ϵ ≤ Advpriv

Π (D). AdversaryD makes
two queries and runs in a small constant amount of time.

Achievable integrity plus privacy. This raises the question
of what level of log integrity (correctness) is achievable when
we want privacy, which we can characterize with the pruning
functions that modify entries to what should be communicable
without compromising privacy. In the example above, if prune
replaced OS and CL in the first entry with ‘∗’, then the negative
result would no longer work. As we will show, we can in fact
build a scheme (ours) that achieves LIS and PRIV security
for that pruning function and sequence of logins and actions.

To generalize this we need to specify a pruning function
that converts the ideal transcript into one that is achievable,

LISΠ,prune(A)
strp←$ Is ; win← 0
AO

Return win

InitClient
µ← µ+ 1 ; stµ←$ Ic

Login(c, OS, CL, RP)

If c > µ then Return ⊥
(sid, stc, strp)←$ L((stc, OS, CL), (strp, RP))
γc,sid ← True
q ← q + 1
T ∗[q]← (INIT, c, sid, OS, CL, RP)
Return (sid, stc)

Action(c, sid, OS, CL, RP)

If γc,sid = ⊥ then Return ⊥
(stc, strp)←$N ((stc, sid, OS, CL), (strp, sid, RP))
q ← q + 1
T ∗[q]← (ACTION, c, sid, OS, CL, RP)
Return stc

Re-encryption(c, sid)
If γc,sid = ⊥ then Return ⊥
(stc, strp)←$R((stc, sid), (strp, sid))
T ∗[q]← (REENC, c, sid)
Return stc

History(c, sid)
If γc,sid = ⊥ then Return ⊥
(T , stc)←$H((stc, sid), (strp, sid))
If T ̸= prune(T ∗, sid) then

win← 1
Return T

PRIVΠ(D)
strp←$ Is ; b←$ {0, 1}
b′←$DO(strp)

Return (b′ = b)

InitClient
µ← µ+ 1 ; stµ←$ Ic

LoginLR(c, OS0, CL0, OS1, CL1, RP)

If c > µ then Return ⊥
(sid, stc, strp)←$ L((stc, OSb, CLb), (strp, RP))

γc,sid ← True
Return (sid, strp)

ActionLR(c, sid, OS0, CL0, OS1, CL1, RP)

If γc,sid = ⊥ then Return ⊥
(stc, strp)←$N ((stc, sid, OSb, CLb), (strp, sid, RP))

Return strp

Re-encryption(c, sid)
If γc,sid = ⊥ then Return ⊥
(stc, strp)←$R((stc, sid), (strp, sid))

Return strp

Figure 3: (Left) Logging integrity security (LIS) game for a CSAL scheme Π, pruning function prune, and adversary A. Here
O = (InitClient,Login,Action,Re-encryption,History) represents the set of oracles the adversary can call. (Right) Logging
RP privacy (PRIV) game for a CSAL scheme Π and adversary D. Here O = (InitClient,LoginLR,ActionLR,Re-encryption).

given the pattern of accesses so far made in the course of the
LIS game. Towards this, consider a graph G = (V,E), where
V consists of nodes labeled by sessions, and a directed edge
(u, v) between nodes means session u can access log entries
made by session v. We can build this graph iteratively by pro-
cessing the ideal transcript T ∗ which is an ordered list of six-
tuples (ti, ci, sidi, OSi, CLi, RPi) for 1 ≤ i ≤ τ . Here we de-
note the entry type by a label ti ∈ {INIT, ACTION, REENC}.

If ti = INIT, then we add a new node labeled by sidi to
the graph. We add an edge (u, sidi) and (sidi, u) for every
u whose client is the same as ci: all sessions on the same
client are fully connected (clients in our model are stateful
and so can decrypt logs from any session on that device). We
include here the edge (sidi, sidi). Once that is done, we then
an add edge (u, sidi) for all sessions u on other clients. If
instead ti = REENC, then we add an edge (u, sidi) for all
sessions u that do not already have an edge to sidi. If finally
ti = ACTION, we do nothing to the graph. Finally, we can
compute the transitive closure of G, and use the result as the
graph G for processing subsequent entries.

Then, our pruning function pruneR, that takes reachability
into account, processes a transcript T ∗and session id sid as
follows. It first generates a reachability graph G as described
above, by processing T ∗. Then, for each entry (ti, ci, sidi,
OSi, CLi, RPi) where ti ∈ {INIT, ACTION}, it adds the en-
try (ti, sidi, OS, CL, RPi), to the output transcript T , where
(OS, CL)=(OSi, CLi) if (sid, sidi) ∈ G (an edge from sid to
sidi exists), else (OS, CL)=(∗, ∗). Recall that ‘∗’ denotes a
pruned portion of the log entry. RPi are never pruned.

Now we introduce our first pair of positive results: our
CSAL scheme Ψ is ϵ-correct for pruning function pruneR
with ϵ = 0 (perfectly correct) and it achieves privacy, assum-
ing the security of the underlying encryption schemes. We
conjecture that no private scheme can do better than pruneR
on LIS correctness. This would mean that our protocol is op-
timally correct, but we leave proof of this fact to future work.
The proofs of the following theorems are in the full version.

Theorem 5.2 Our CSAL scheme Ψ is ϵ-correct for pruning
function pruneR with ϵ = 0.

To account for resource usage in our reductions, let TPKE
Enc (ℓ)

denote the worst-case runtime of PKE on input plaintext with
length ℓ and TAE

Enc(ℓ) be the worst-case runtime of AE encryp-
tion with plaintexts of length ℓ. Let ℓ1 be the maximum length
of the encoding of a log entry (OS ∥ CL). We assume κ is the
length of symmetric keys used in the scheme (i.e., κ = 128).
We assume oracle calls, fixed-length randomness generation,
and table lookups and use O to hide small constants.

Theorem 5.3 Let Ψ be our CSAL scheme built using PKE
scheme PKE and AEAD AE. Let D be a PRIVΨ-adversary
making at most q queries. Then we give MU-IND-CPAPKE-
adversary Dpke and IND-CPAAE-adversary Dae such that

Advpriv
Ψ (D) ≤ 2 ·Advmu-ind-cpa

PKE (Dpke)+2q ·Advind-cpa
AE (Dae) .

Adversary Dpke makes at most q2 + q oracle queries, while
Dae makes at most q+1 oracle queries. Their run times are at
mostO(q3+ q·TAE

Enc(ℓ1)+ q·TAE
Enc(qκ)) andO(q3·TPKE

Enc (ℓ1)).

6 Security Beyond Passive Adversaries

In Section 5 we formalized passive security for our CSAL
protocol, showing that an HBC RP cannot infer information
about client-side plaintext log entries, nor can it link two ses-
sions to the same device. This addresses the most pressing
threats to user privacy, but leaves open the question of what
actively malicious RPs might achieve. Future work is needed
to formally model these more complicated threats; here we
provide a structured discussion of both what actively mali-
cious attacks we believe our protocol prevents and which
attacks it does not prevent.

For each security goal we identify actively malicious at-
tacks. For each attack we discuss either how our protocol
mitigates them, what mitigations could be added (and their
trade-offs in terms of complexity or performance), or how
some of the malicious attacks appear to be fundamental—no
scheme in our setting will be able to prevent them, though pro-
tocols might be able to detect them. While we cannot claim
that our analysis predicts all possible attacks, we believe we
have covered the most pressing issues.

Log privacy. We start with active attacks targeting log pri-
vacy. Recall that we want RP’s to be blinded from the client-
and encryptor-provided log entries (CL and OS, respectively).

RP adds a malicious client device. A malicious RP can
allow a malicious client device to log into a user account.
This is similar to the “ghost user” approach suggested for
covert,platform-facilitated monitoring of encrypted messag-
ing [57]. This attack occurs because the RP controls authen-
tication and appears to be fundamental in any setting where
this is the case, so no CSAL protocol can fully mitigate it.

We do note that our protocol does add some friction to
success of this attack, by ensuring that. First, fully automating
the attack would require the malicious RP to subvert some
device’s OS encryptor (to decrypt log entries), i.e., rooting the
device and if the encryptor is protected by hardware subvert-
ing those defenses as well. While such attacks exist (see [68]),
they may be out-of-reach for some adversaries. Second, hon-
est client devices will be aware of the inserted session because
the client needs the public key of the malicious device to share
information with it. While the client will not know, a priori,
whether the public key is associated with a malicious client,
users could, in theory, determine that a particular RP is always
adding additional devices. The attack’s detectability should
strongly disincentivize RPs from behaving poorly. Finally,
in our protocol encryptors can authenticate the RP. Hence,
OS vendors can maintain quality control over which RPs
they support, rejecting encryptor requests for RPs with a bad
reputation (like how browsers manage root TLS certificates).

RP deploys a malicious client. An RP may also ship ma-
licious client software to an (honest) client device, whether
it be malicious javascript running in the browser or a ma-
licious native app, to learn static identifiers and finger-
print devices. This threat is not hypothetical: malicious

RPs are known to deploy tracking or device fingerprinting
code [25, 42, 43, 47, 54, 55, 61, 71], which is why OS’s restrict
them from having access to static device identifiers. Our pro-
tocol maintains the same level of protections as current OS’s,
by restricting access to the OS-supplied log information OS
to the OS-managed encryptor, combined with end-point attes-
tations, preventing the client from performing a meddler-in-
the-middle attack against the encrypted log entries.

RP reuses nonces: Our protocol uses RP-chosen nonces
to prevent a malicious client from replaying prior log files. A
malicious RP could repeat nonces, allowing the replay attack—
we discuss this below regarding log integrity. For log privacy,
replaying the nonces has no impact, as privacy is provided by
the client-side chosen randomness used within encryption.

Unlinkability. A passive RP only learns the vendor identity
(from the encryptor certificate), and cannot learn anything
else about whether two sessions originate from the same de-
vice (see Appendix C). The same RP-added malicious device
attack discussed above would undermine unlinkability, which,
again, seems fundamental but with the partial mitigations
applying here as well.

Malicious client linking attacks: A malicious client may
try to fingerprint a device. Our encryptor-based protocol
should make this harder, though it will require that the OS
encryptor implementations isolate sessions by application
(i.e., prevent cross-application requests) and clear application-
related sessions state when an app is uninstalled.

Log integrity. To address log integrity, we break our discus-
sion up into two integrity threat models: (1) compromised
client software (and an honest RP), and (2) a malicious RP
(including possibly malicious client software).

Malicious client log hiding or spoofing: A malicious client
might try to hide its sessions or some of its actions, for exam-
ple by refusing to send ciphertexts, sending bogus ciphertexts
that fail decryption, or removing public keys from PK. For
the first attack, an honest RP will prevent login or any action
without a properly formatted and digitally signed CSAL re-
sponse. While by design the RP cannot verify the contents of
the encrypted log entry, recall from Section 4, that we rely on
FIDO2-style attestations and only the encryptor can sign the
ciphertexts. Hence, we prevent the second threat of sending
bogus ciphertexts because the OS encryptor is the only entity
that can generate an RP-accepted ciphertext. So at best the
malicious client can change the client log info string CL, but,
importantly, the OS-provided log string OS will be correct.
The encryptor might be able to further prevent encrypting junk
CL by performing sanity checks and rejecting requests that do
not satisfy those checks (e.g., that an application description
within CL matches the calling application). The third issue
here is a malicious client removing public keys from PK,
to, for example, selectively deny some clients from learning
specific log entries. This is prevented because the RP signs
request, which the OS encryptor verifies.

If an adversary compromises the OS, then our protocol
does not prevent spoofed encrypted log entries — we are not
suggesting full hardware-based attestation of the OS. Partly,
because we believe the most pressing threat to log integrity
is from UI-bound adversaries that will not even compromise
a client, let alone the OS. Also, because full attestation is
difficult to deploy. Even here, our protocol prevents the com-
promised encryptor from impersonating other existing ses-
sions and ensures that honest clients receive any maliciously-
generated ciphertext. This means that the malicious access
cannot be fully hidden and users will see a log entry with
(potentially spoofed) OS and client information strings, but a
valid RP-provided string.

Malicious RP selectively dropping entries: An actively
malicious RP can always deny log access, or even entry access,
to any client session. Like in encrypted group messaging,
attacks that split the view of a group are unavoidable, and
we can at most force the malicious RP to be consistent: if
it removes clients or particular client actions from the view
of another client, it cannot allow communication between
those clients subsequently. Our current protocol does not
yet achieve this, because clients do not check for consistency
across interactions with the RP nor is there any way for a client
to detect that an action log ciphertext Cdem was dropped.

We can prevent such attacks with small changes to our
current protocol. First, clients can record during login and
re-encryption, what public key set they observed and use this
to check for consistency of PK. Second, to prevent individual
actions from being omitted, each log entry can include as
part of its associated data, a hash of the previous log entry
ciphertext Cdem from that session. Recipients can then ver-
ify a total ordering over log entries (per session), hence the
RP can at best truncate sessions (which is always possible).
This would also prevent a related attack, reordering log en-
tries, even without reliance on client-side time stamps. These
additional mitigations might cause performance issues for
complex, asynchronous web applications, such as those that
allow parallel calls from the client to the RP.

7 Implementation and Evaluation

We implemented a prototype of our CSAL protocol to ev-
idence feasibility of the approach. Now we discuss some
details and performance of our proof-of-concept.

Implementation components. Our CSAL prototype consists
of a CSAL-supporting RP, a CLI client, and an encryptor
service, all built in Python. Communication between the client
and RP is via HTTPS, and between the client and encryptor
uses the Python subprocess module. Storage on the RP and
encryptor uses SQLite. The encryptor currently runs as an
unprivileged process to ease development.

For the public key encryption, we utilize HPKE [11] as im-
plemented in the PyHPKE library [21]. For digital signatures

and AEAD, we use RSA-PSS and Fernet AEAD from the
Python cryptography library [20].

We set challenge nonces and session IDs to be 16 B (match-
ing the length required by FIDO2’s WebAuthn [18]). Certifi-
cates are standard self-signed X.509 PEM format; cookies
are Base64 encoded 32-byte values that are URL safe. We set
OS to be the system’s serial number, and CL to be a standard
ASCII-encoded UA string. For both the RP and encryptor cer-
tificates we add a certificate generation routine that populates
the certificate with random subject name details, issuer name,
validity period, and certificate serial number. HTTP payloads
for protocol messages between the client and RP are encoded
as byte strings using Python’s pickle library.

Evaluation. We performed micro-benchmarks on the CSAL
login, re-encryption, and log retrieval payloads, to measure
the CPU costs and bandwidth utilization under a single ses-
sion, and analyze the growth based on having more sessions.
We did not evaluate action logging because its payload size
and computation is independent of the number of sessions.
For convenience, we run the prototype locally with the RP as
a localhost web service. While we could measure the protocol
over a wide-area network, our overheads are small enough that
such measurements would be dominated by the network’s per-
formance profile. CPU timing measurements use the Python
timing library on a MacBook Pro with an M1 CPU, 8 GB of
RAM running Sonoma v.14.6.

Login: For session initialization we first measure the
bandwidth cost of login without key smuggling. Sending
(N, params, CERTrp,PK, COOKIE, σreq) to the client takes
1,696 B and from client to encryptor as 1,825 B including the
value of CL. In this first login, PK and CERTrp are empty.

Each additional public key in PK adds 1,753 B to the pay-
load; 69 B for the pickled HPKE public key, 451 B for the
RSA-PSS public key in PEM format, and 1,233 B for the en-
cryptor certificate in PEM format. Running 10 CSAL logins
back-to-back the total payload size is 36,834 B to the client
and 38,112 B to the encryptor, and running 40 CSAL logins
result in a payload size of 788,896 B to the client. This is
reasonable given the infrequency of logins.

The RP stores a row for each login containing a user id,
an account id (e.g., email address), the session id retrieved
from the encryptor, the corresponding public key associated
with the session id, and the ciphertexts (Ckem, Cdem). Thus,
storage for one such entry is 515 B, measured in bytes without
any encoding. For the ciphertexts created by the encryptor,
Cdem measures 292 B and each Ckem has size 60 B.

On the encryptor’s end, a single populated row on the en-
cryptor’s database is 2,263 B and contains the sid, user ac-
count info (e.g., email address), RP info (e.g., facebook.com),
and the public, private, and symmetric keys associated with
the session. Given that HPKE provides an encryption key en-
capsulated with the public key, we also store the encapsulated
key on the database for log decryption later on. The size of

the entire sqlite database with a single row is 8 KB; it incurs
additional storage associated with indices, metadata, etc.

To ensure that new sessions can access data belonging to
old sessions, the encryptor smuggles old secret keys to new
sessions during login. During the smuggling, the encryptor
iterates over TKEM and attempts to decrypt all ciphertexts using
the secret keys it has stored. For TKEM with a single entry and
public key, pad(K) is fixed at 44 B and Cold is 164 B. For two
entries, pad(K) has size 88 B and Cold 328 B, and so on.

Thus, the encryptor’s response is proportional to the num-
ber of public keys in PK. The entire response to the client
for an empty PK is 2,885 B. Its breakdown is 16 B for sid,
65 B for pk, 1,233 B for CERTA, 292 B for Cdem and 60 B for
Ckem. In addition to this, each of the ciphertexts are signed
thus resulting in a 256 B digital signature, and a 451 B RSA
public key in PEM format. σ is also 256 B. For reference, an
initial password authentication request to Amazon (without
CSAL) embeds a payload of 14,027 B.

The entire time elapsed for a round trip CSAL login is
7 ms for an empty PK. This averaged over 10 CSAL lo-
gins increases to 146.307 ms. We do note that we used the
time.sleep() function to introduce some delays as data is re-
ceived from the client and sent back to the RP to avoid incom-
plete or truncated data. However, the numbers we report here
are without factoring in the delays.

Re-encryption: For our analysis we simulate the first client
device to log into the account, such that its key K is con-
tained in only one entry in TKEM, and with a growing number
of sessions that do not know K. In the case where there are
two sessions, the RP payload sent to the encryptor has size
2,653 B, including L and the two entries in TCERT. The encryp-
tor payload is 382 B for LKEM . The sizes of L and LKEM

grow linear to the number of re-encryptions requested. For n
sessions, the worst case requires O(n2) re-encryptions, but
each missing KEM only needs to be encrypted once. Since re-
encryption can be performed in the background, its overheads
will not affect user experience.

Log retrieval: For log retrieval, the protocol forwards tables
TCERT, TLOG, TOLD, the corresponding entries for sid in TKEM,
and a signature σreq to the client. Here we assume each table
has a single session’s record from a client login, and that
session requested to view their logs. The resulting payload
sent to the user has size of 2,482 B (no smuggling) and 2,631 B
for the smuggling case — this will grow proportionally to the
number of active sessions.

On the encryptor’s end multiple operations are carried out
to display the final log (see Section 4). Decryption and sig-
nature verification takes an average of 0.63 ms of CPU time,
taken over 10 runs. With more sessions and entries, this time
will increase linearly. While our experimental results are pre-
liminary, they indicate that CSAL protocols will not incur
prohibitive overheads in practice.

8 Discussion

Here we discuss remaining challenges, paths, and considera-
tions for the deployment of our protocol.

Deployment considerations. Our prototype shows that the
performance cost of deploying our CSAL protocol is not pro-
hibitive. The major deployment obstacles come from needing
support from OS vendors and other infrastructure challenges,
specially to provide security against actively malicious RPs.

Reliance on FIDO2: Our protocol relies on FIDO2-style
attestations for unlinkability and encryptor authenticity in
the face of an actively malicious client or RP. FIDO2 is al-
ready deployed, and adopting their attestation mechanisms
will speed deployment of CSAL. Unfortunately, we inherit
this approach’s limitations, such as depending on vendors
implementing certificates properly to achieve unlinkability.

Certificate management: CSAL requires public key infras-
tructures (PKI) to manage certificates from both the encryp-
tors and the RPs. From the OS side, we would like to be able
to list and revoke RPs based on their behavior, while from the
RP side, we must handle expired certificates, etc. For the man-
agement of the encryptor certificates, deployments could use a
system similar to FIDO MDS [3], which provides the RP with
the attestation key in FIDO attestation protocols. Meanwhile,
for the RPs, one could use an infrastructure similar to the one
for TLS certificates [64].

OS-vendor support: A key component of our system is
the OS encryptor. Deploying it would require collaboration
between OS vendors and browsers or other clients, similar to
what was required for FIDO2. We acknowledge this is not
an easy task and would likely take years. However, seeing
how far FIDO2 has come, we believe it is possible. Addi-
tionally, it’s possible that parts of FIDO2 specifications and
implementations could be reused for CSAL.

Limitations and future work. As discussed earlier, attesta-
tion is difficult to deploy and there might be devices that do
not support it. If attestation is unavailable, we provide at least
as much information as current ASIs and provide integrity
against HBC RPs, which current ASIs do not do.

While we provide a discussion of malicious security, we
leave the formalization of a malicious RP for future work.
Additionally, we assumed a client-server architecture, future
work could look into alternative architectures, such as peer-
to-peer. Finally, usability of ASIs in general remains an open
question. Future work will be needed to explore what CSAL-
enabled ASIs should show to users and how that information
should be displayed, in order to help the legitimate account
owner understand their security. At the same time, we will
also need to review such designs to assuage safety concerns
should CSAL-enabled ASIs become available to an attacker
that successfully compromises the account.

9 Ethics and Open Science Policy

Our paper tackles an important problem: building account se-
curity systems that ensure trustworthy information for users.
Our research and experiments consist of a prototype imple-
menting an encryptor for a local application, which synthetic
account data. As such we had no ethical concerns. Our proto-
type is available as a public, open-source project.

Acknowledgements

This work was funded in part by NSF grant CNS-2120651
and a generous gift from Google.

References
[1] Client to authenticator protocol (ctap). https://

fidoalliance.org/specs/fido-v2.1-ps-20210615/
fido-client-to-authenticator-protocol-v2.
1-ps-20210615.html. (Accessed on 04/29/2024).

[2] Fido 2.0: Key attestation format. https://
fidoalliance.org/specs/fido-v2.0-ps-20150904/
fido-key-attestation-v2.0-ps-20150904.html.
(Accessed on 04/25/2024).

[3] Fido alliance metadata service. hhttps://fidoalliance.org/
metadata/. (Accessed on 09/04/2024).

[4] fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-
v2.0-id-20180227.pdf. https://fidoalliance.org/specs/
fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.
0-id-20180227.pdf. (Accessed on 04/29/2024).

[5] Get a Verification Code and Sign in With Two-factor Authentica-
tion - Apple Support. https://support.apple.com/en-us/
HT204974. (Accessed on 12/04/2022).

[6] How encrypted email works | proton. https://proton.me/
blog/encrypted-email. (Accessed on 01/27/2024).

[7] icloud data security overview - apple support. https://support.
apple.com/en-us/102651. (Accessed on 01/27/2024).

[8] Introduction to federated identity and the fedid cg
| federated identity community group. https://
www.w3.org/community/fed-id/2022/04/21/
introduction-to-federated-identity-and-the-fedid-cg/.
(Accessed on 01/28/2024).

[9] Passkeys. https://fidoalliance.org/passkeys/. (Ac-
cessed on 01/11/2024).

[10] Passkeys. https://developer.apple.com/passkeys/.
(Accessed on 01/11/2024).

[11] Rfc 9180 - hybrid public key encryption. https://datatracker.
ietf.org/doc/rfc9180/. (Accessed on 04/25/2024).

[12] Securitywhitepaper.pdf. https://mega.nz/
SecurityWhitepaper.pdf. (Accessed on 01/27/2024).

[13] The simplest, most secure way to sign into your accounts without
a password. https://safety.google/authentication/
passkey/. (Accessed on 01/11/2024).

[14] Two-factor authentication (2fa). https://duo.com/
product/multi-factor-authentication-mfa/
two-factor-authentication-2fa. (Accessed on
01/11/2024).

[15] Use your internet accounts on mac - apple support.
https://support.apple.com/guide/mac-help/
add-your-email-and-other-accounts-mh35565/mac.
(Accessed on 04/27/2024).

[16] User-agent client hints. https://wicg.github.io/
ua-client-hints/. (Accessed on 01/28/2024).

[17] Web authentication: An api for accessing public key creden-
tials - level 2. https://www.w3.org/TR/webauthn-2/
#batch-attestation. (Accessed on 04/29/2024).

[18] Web authentication: An api for accessing public key creden-
tials - level 2. https://www.w3.org/TR/webauthn-2/
#sctn-spec-roadmap. (Accessed on 03/05/2024).

[19] Web authentication: An api for accessing public key credentials level
1. https://www.w3.org/TR/webauthn-1/. (Accessed on
01/28/2024).

[20] Welcome to pyca/cryptography. https://cryptography.io/
en/latest/. (Accessed on 09/04/2024).

[21] Welcome to pyhpke — pyhpke 0.5.3 documentation. https://
pyhpke.readthedocs.io/en/stable/index.html. (Ac-
cessed on 04/25/2024).

[22] What is user-agent reduction? | privacy sandbox | google
for developers. https://developers.google.com/
privacy-sandbox/protections/user-agent. (Accessed
on 01/28/2024).

[23] Security of end-to-end encrypted backups, 2021.

[24] The labyrinth encrypted message storage protocol, 2023.

[25] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. Fpdetective: dusting the web for
fingerprinters. In CCS, 2013.

[26] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet:
security notions, proofs, and modularization for the signal protocol. In
EUROCRYPT, 2019.

[27] R Barnes, B Beurdouche, R Robert, J Millican, E Omara, and K Cohn-
Gordon. RFC 9420: The Messaging Layer Security (MLS) protocol,
2023.

[28] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-privacy in public-key encryption. In ASIACRYPT,
2001.

[29] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing
authenticated encryption. In EUROCRYPT, 2022.

[30] Mihir Bellare and Bennet Yee. Forward Integrity for Secure Audit
Logs. Technical report, 1997. Preprint.

[31] Mihir Bellare and Bennet Yee. Forward-security in Private-key Cryp-
tography. In Topics in Cryptology—CT-RSA, 2003.

[32] Rosanna Bellini, Emily Tseng, Noel Warford, Alaa Daffalla, Tara
Matthews, Sunny Consolvo, Jill Palzkill Woelfer, Patrick Gage Kelley,
Michelle L Mazurek, Dana Cuomo, et al. Sok: Safer digital-safety
research involving at-risk users. In IEEE Security & Privacy, 2024.

[33] Josh Blum, Simon Booth, Brian Chen, Oded Gal, Maxwell Krohn, Julia
Len, Karan Lyons, Antonio Marcedone, Mike Maxim, Merry Ember
Mou, et al. Zoom cryptography whitepaper. 2022.

[34] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record com-
munication, or, why not to use PGP. In Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 77–84, 2004.

[35] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung.
Cross-Device Tracking: Measurement and Disclosures. PoPETs, 2017.

[36] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. Univer-
sally composable end-to-end secure messaging. In CRYPTO, 2022.

[37] Cheun Ngen Chong, Zhonghong Peng, and Pieter H Hartel. Secure
audit logging with tamper-resistant hardware. In IFIP SEC, 2003.

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
hhttps://fidoalliance.org/metadata/
hhttps://fidoalliance.org/metadata/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.pdf
https://support.apple.com/en-us/HT204974
https://support.apple.com/en-us/HT204974
https://proton.me/blog/encrypted-email
https://proton.me/blog/encrypted-email
https://support.apple.com/en-us/102651
https://support.apple.com/en-us/102651
https://www.w3.org/community/fed-id/2022/04/21/introduction-to-federated-identity-and-the-fedid-cg/
https://www.w3.org/community/fed-id/2022/04/21/introduction-to-federated-identity-and-the-fedid-cg/
https://www.w3.org/community/fed-id/2022/04/21/introduction-to-federated-identity-and-the-fedid-cg/
https://fidoalliance.org/passkeys/
https://developer.apple.com/passkeys/
https://datatracker.ietf.org/doc/rfc9180/
https://datatracker.ietf.org/doc/rfc9180/
https://mega.nz/SecurityWhitepaper.pdf
https://mega.nz/SecurityWhitepaper.pdf
https://safety.google/authentication/passkey/
https://safety.google/authentication/passkey/
https://duo.com/product/multi-factor-authentication-mfa/two-factor-authentication-2fa
https://duo.com/product/multi-factor-authentication-mfa/two-factor-authentication-2fa
https://duo.com/product/multi-factor-authentication-mfa/two-factor-authentication-2fa
https://support.apple.com/guide/mac-help/add-your-email-and-other-accounts-mh35565/mac
https://support.apple.com/guide/mac-help/add-your-email-and-other-accounts-mh35565/mac
https://wicg.github.io/ua-client-hints/
https://wicg.github.io/ua-client-hints/
https://www.w3.org/TR/webauthn-2/#batch-attestation
https://www.w3.org/TR/webauthn-2/#batch-attestation
https://www.w3.org/TR/webauthn-2/#sctn-spec-roadmap
https://www.w3.org/TR/webauthn-2/#sctn-spec-roadmap
https://www.w3.org/TR/webauthn-1/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://pyhpke.readthedocs.io/en/stable/index.html
https://pyhpke.readthedocs.io/en/stable/index.html
https://developers.google.com/privacy-sandbox/protections/user-agent
https://developers.google.com/privacy-sandbox/protections/user-agent

[38] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. Journal of Cryptology, 33:1914–1983, 2020.

[39] Alaa Daffalla, Marina Bohuk, Nicola Dell, Rosanna Bellini, and
Thomas Ristenpart. Account security interfaces: important, unintu-
itive, and untrustworthy. In USENIX Security, 2023.

[40] Emma Dauterman, Henry Corrigan-Gibbs, and David Mazières. Safe-
tyPin: Encrypted backups with Human-Memorable secrets. In OSDI,
2020.

[41] Emma Dauterman, Danny Lin, Henry Corrigan-Gibbs, and David Maz-
ières. Accountable authentication with privacy protection: The larch
system for universal login. In OSDI, 2023.

[42] Peter Eckersley. How Unique is Your Web Browser? In PETS, 2010.

[43] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
Pios: Detecting privacy leaks in ios applications. In NDSS, 2011.

[44] Robert E Endeley. End-to-end encryption in messaging services and
national security—case of whatsapp messenger. Journal of Information
Security, 9(1):95–99, 2017.

[45] Diana Freed, Jackeline Palmer, Diana Minchala, Karen Levy, Thomas
Ristenpart, and Nicola Dell. “A Stalker’s Paradise” How Intimate
Partner Abusers Exploit Technology. In CHI, 2018.

[46] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and
Michael Rushanan. Dancing on the lip of the volcano: Chosen cipher-
text attacks on apple {iMessage}. In USENIX Security, 2016.

[47] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In ACM
WISEC, New York, NY, USA, 2012.

[48] Sven Hammann, Michael Crabb, Sasa Radomirovic, Ralf Sasse, and
David Basin. I’m surprised so much is connected. In CHI, 2022.

[49] Sven Hammann, Saša Radomirović, Ralf Sasse, and David Basin. User
account access graphs. In CCS, 2019.

[50] Carmit Hazay and Yehuda Lindell. Efficient secure two-party protocols:
Techniques and constructions. Springer Science & Business Media,
2010.

[51] Jason E Holt and Kent E Seamons. Logcrypt: forward security and
public verification for secure audit logs. Cryptol. ePrint Archive, 2005.

[52] Thomas Hupperich, Davide Maiorca, Marc Kührer, Thorsten Holz, and
Giorgio Giacinto. On the Robustness of Mobile Device Fingerprinting:
Can Mobile Users Escape Modern Web-Tracking Mechanisms? In
ACSAC, 2015.

[53] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. Sgx-
log: Securing system logs with sgx. In Asia CCS, 2017.

[54] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix
Freiling. Fingerprinting mobile devices using personalized configura-
tions. PoPETs, 2016.

[55] Andreas Kurtz, Andreas Weinlein, Christoph Settgast, and Felix Freil-
ing. Dios: Dynamic privacy analysis of ios applications. 2014.

[56] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and
Franziska Roesner. Internet Jones and the Raiders of the Lost Trackers:
An Archaeological Study of Web Tracking from 1996 to 2016. In
USENIX Security, 2016.

[57] Ian Levy and Crispin Robinson. Principles for a more informed excep-
tional access debate. The Lawfare Institute, 2018.

[58] Di Ma and Gene Tsudik. A New Approach to Secure Logging. ACM
Transactions on Storage, 2009.

[59] Philipp Markert, Leona Lassak, Maximilian Golla, and Markus Dür-
muth. Understanding users’ interaction with login notifications. In
CHI, 2024.

[60] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya Sleeper,
Jill Palzkill Woelfer, Martin Shelton, Cori Manthorne, Elizabeth F
Churchill, and Sunny Consolvo. Stories From Survivors: Privacy &
Security Practices When Coping With Intimate Partner Abuse. In CHI,
2017.

[61] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster:
Exploring the ecosystem of web-based device fingerprinting. In IEEE
Security & Privacy, 2013.

[62] United States. Department of Defense. Department of Defense Trusted
Computer System Evaluation Criteria. Department of Defense, 1987.

[63] Yasuhiro Ohtaki. Partial disclosure of searchable encrypted data with
support for boolean queries. In ARES. IEEE, 2008.

[64] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, 2018.

[65] Bruce Schneier and John Kelsey. Cryptographic support for secure
logs on untrusted machines. In USENIX Security Symposium, 1998.

[66] Adi Shamir. How to share a secret. Commun. ACM, 1979.

[67] Marianne Swanson and Barbara Guttman. Generally Accepted Princi-
ples and Practices for Securing Information Technology Systems. NIST,
1996.

[68] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader
AlBassam, Christina Garman, Daniel Genkin, Andrew Miller, Eyal
Ronen, and Yuval Yarom. SoK: SGX.Fail: How stuff get eXposed.
2022.

[69] Noel Warford, Tara Matthews, Kaitlyn Yang, Omer Akgul, Sunny
Consolvo, Patrick Gage Kelley, Nathan Malkin, Michelle L Mazurek,
Manya Sleeper, and Kurt Thomas. Sok: A framework for Unifying
At-risk User Research. In IEEE Security & Privacy, 2022.

[70] Brent R Waters, Dirk Balfanz, Glenn Durfee, and Diana K Smetters.
Building an encrypted and searchable audit log. In NDSS, 2004.

[71] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin
Abadi. Host fingerprinting and tracking on the web: Privacy and
security implications. In NDSS, 2012.

A Further Diagrams

Due to space constraints, we include three flow diagrams here
in the appendix: one for action logging, one for re-encryption,
and one for log retrieval (also referred to as obtaining the
history). See Figure 4, Figure 5, and Figure 6.

B Algorithms Pseudocode

Here we include the pseudocode for the remaining CSAL
algorithms based on our protocol from Section 4. Figure 7
includes the pseudocode for the CSAL action algorithm N .
The client state is a tuple containing a client table TCL and
the encryptor keys. The RP state is a tuple of tables. The RP
generates a challenge and then the client encrypts a new DEM
using this challenge. Finally, the RP adds the DEM to TLOG,
which updates the RP state. It returns the client and RP states.

Next, Figure 8 shows the pseudocode for the CSAL history
algorithm H. The algorithm first goes over all the KEMs
encrypted to some session in the current device, decrypts
them and aggregates all the keys into a set K. Next, it iterates
over TOLD in reverse, and recovers the old symmetric keys

Encryptor
(skA, CERTA), TCL

Client A
COOKIEsid

Relying Party
TCERT, TLOG, TOLD, TKEM,

skrp, CERTrp

Request information for action, COOKIEsid

Verify COOKIEsid
Generate N

σreq←$ {sid ∥N}skrpsid,N, σreqsid,N, σreq, CL

Verify σreq

Cdem←$ {N, OS ∥ CL}ssksid
Ksid sid, Cdem sid, Cdem, COOKIEsid

Verify COOKIEsid, Cdem

TLOG.ADD(sid, Cdem, RP)

Figure 4: CSAL protocol Ψ action log flow (N). If any RP verification fails, it would delete relevant COOKIEsid and return ⊥.

it can using the keys in K. At the same time, it adds each
recovered key to K. Finally, it goes over TLOG to reconstruct
the activity log T . For each entry on the table, if the key to
decrypt it is in K, it creates an entry OS, CL, RP, else the entry
only contains RP. It adds each entry to T and finally returns
T and the unmodified client state.

Finally, the algorithm for the CSAL re-encryption R is
shown in Figure 9. The RP again generates a challenge N .
The client recovers the KEMs it can decrypt and re-encrypts
each one to any other session that did not yet have access to
such KEM, creating new KEMs. The new KEMs are stored
in TKEM. The client state doesn’t change, but the new TKEM

updates the RP state. The algorithm returns the two states.

C Unlinkability Formalization

We show a pseudocode game capturing unlinkability in
Figure 10. The purpose of the unlinkability game is to ex-
press the idea that the server should not be able to tell whether
two different sessions come from the same or from different
devices. At the start, the challenger selects a random bit b,
initializes the server state strp. Then, it runs the distinguisher
D, who has access to strp and to the oracles for client initial-
ization, client login, client action, client re-encryption, and
challenge. For the challenge oracle, D provides information
for two clients. The challenge then runs a login on one of
the two clients at random (based on b). The adversary can
observe the sid and the final server state output across all the
oracles. With this information, D wins if it guesses the bit b.

We define the UNLINKΠ advantage of an adversary D as
the probability that it outputs 1, namely:

Advunlink
Π (D) = 2 · Pr [UNLINKΠ(D)⇒ 1]− 1.

Intuitively, our CSAL scheme inherits the unlinkability of
the underlying attestation mechanisms because our cipher-
texts’ length are independent of the previous use of that client
device and the protocol generates fresh public keys and ses-
sion identifiers independently of the client device. Specifi-

cally, we don’t need our underlying PKE to be anonymous (in
the sense of [28]). Hence, assuming CERTA does not reveal
information that allows device fingerprinting, our scheme pre-
vents linking two sessions to the same device, As discussed
in Section 4, we rely on anonymity of FIDO2 attestations,
which they achieve via vendor-defined anonymity sets.

Theorem C.1 Let Π be our CSAL scheme with sid bit
length n and built using PKE scheme PKE and AEAD AE. Let
D be an UNLINKΠ-adversary that makes at most q queries
to its oracles. Then we give an MU-IND-CPAPKE-adversary
Dpke and IND-CPAAE-adversary Dae such that

Advunlink
Π (D) ≤2Advmu-ind-cpa

PKE (Dpke)

+ 2q · Advind-cpa
AE (Dae) + q2/2n−1 .

Adversary Dpke makes at most q2 + q oracle queries, while
Dae makes at most q+1 oracle queries. Their run times are at
mostO(q3 + q·TAE

Enc(ℓ1)+ q·TAE
Enc(qκ)) andO(q3 ·TPKE

Enc (κ)).

At first glance, the UNLINK theorem and the game look
similar to those of PRIV, however there are some subtle dif-
ferences. First, throughout the game, the different client states
are only indexed by the sid, not the client. This is to allow
the adversary to query the oracles on the responses from the
challenge oracle; however, it does not know the client from
such session. Hence, we can only query by sid.

Moreover, in PRIV, we require that the adversarially gener-
ated inputs OS0, CL0 and OS1, CL1 have the same length. This
means that the output ciphertext Cdem would have the same
length, while the size of the other plaintexts is independent
of the inputs. However, here, what gets encrypted can depend
on the device selected. For instance, a device c with two ses-
sions would have more smuggling keys than two sessions on
different devices. This is why calling the pad function in Π.L
is important.

Encryptor
(skA, CERTA), TCL

Client A
COOKIEsid

Relying Party
TCERT, TLOG, TOLD, TKEM,

skrp, CERTrp
sync(), COOKIEsid

Verify COOKIEsid
L← [] ; Generate N
For non-empty Ckem,i,sid,k ∈ TKEM:

For empty cell TKEM[i, j]:
Append (i, j, pkk, Ckem,i,sid,k) to L

σreq = {sid ∥N ∥L ∥TCERT}skrpsid,N, L, TCERT, σreqsid,N, L, TCERT, σreq

Ver(CERTrp, sid ∥N ∥L ∥TCERT, σreq)
LKEM ← []
For (i, j, k, Ckem,i,sid,k) ∈ L:

Fetch and verify pkj , pkk with TCERT

Ki ← Dec(pkk, sksid, Ckem,i,sid,k)

l = (i, j, {N,Ki}ssksid
pkj

)

Append l to LKEM LKEM LKEM , COOKIEsid

Verify COOKIEsid
For (i, j, Ckem,i,j,sid) ∈ LKEM:

Verify Ckem,i,j,sid

TKEM.ADD(i, j, pksid, Ckem,i,j,sid)

Figure 5: CSAL protocol Ψ re-encryption flows (R), in which a device can pass along to other sessions some additional session
secret keys to which the device has access.

Encryptor
(skA, CERTA), TCL

Client A
COOKIEsid

Relying Party
TCERT, TLOG, TOLD, TKEM,

skrp, CERTrp
RetrieveLog(), COOKIEsid

σreq = {sid ∥TCERT ∥TOLD ∥TLOG ∥TKEM[∗, sid]}skrp

sid, TCERT, TOLD, TLOG, TKEM[∗, sid], σreqsid, TCERT, TOLD, TLOG, TKEM[∗, sid], σreq

Verify σreq, TCERT

For (RP, usr, i, pki, ski,Ki) ∈ TCL: K ← {i : Ki}
Log← []
For (i, sid, pkk, Ckem,i,sid,k) ∈ TKEM[∗, sid]:

Fetch and verify pkk with TCERT

Ki ← Dec(pkk, sksid, Ckem,i,sid,k)
K ← K ∪ {i : Ki}

For (i, Cold) ∈ TOLD (in reverse order):
If i ∈ K:

Fetch pki from TCERT

((α1,Kα1) ∥ (α2,Kα2) ∥ . . . ∥ (αn,Kαn))← Dec(pki,K[αi], Cold)
For (αj ,Kαj) ∈ ((α1,Kα1) ∥ (α2,Kα2) ∥ . . . ∥ (αn,Kαn)):

If (αj ,Kαj) is not a dummy value:
K ← K ∪ {αj : Kαj }

For (i, Cdem, RP) ∈ TLOG:
entry← RP
If i ∈ K:

Fetch pki from TCERT

OS ∥ CL ← Dec(pki,K[i], Cdem)
entry← (OS ∥ CL ∥ RP)

Log← Log ∪ (i ∥ entry)
Display Log

Figure 6: CSAL protocol Ψ log retrieval flow (H).

N ((stclt, sid, OS, CL), (strp, sid
′, RP)) :

01 If sid ̸= sid′ return ⊥

02 (TCERT, TLOG, TOLD, TKEM)← strp // RP challenge generation
03 N ←$ {0, 1}n

04 (skA, CERTA, TCL)← stclt // Client response
05 (pksid, sksid,Ksid)← stclt[sid]

06 Cdem←$ {N, OS ∥ CL}ssksid
Ksid

07 stclt ← (skA, CERTA, TCL)

08 Add (sid, Cdem, RP) to TLOG // RP receiving response
09 strp ← (TCERT, TLOG, TOLD, TKEM)

10 Return (stclt, strp)

Figure 7: Client-server action for our protocol Ψ as a single
algorithm N .

H((stclt, sid), (strp, sid
′)) :

01 If sid ̸= sid′ return ⊥

02 (TCERT, TLOG, TOLD, TKEM)← strp // RP

03 (skA, CERTA, TCL)← stclt // Client response
04 (pksid, sksid,Ksid)← stclt[sid]

05 For (i, pki, ski,Ki) in TCL:
06 K ← K ∪ {i : Ki}
07 For (i, sid, pkk, Ckem,i,sid,k) in TKEM[∗, sid]:
08 Ki ← Dec(pkk, sksid, Ckem,i,sid,k)

09 K ← K ∪ {i : Ki}
10 For (i, Cold) in TOLD.reversed():
11 If {i : Ki} in K:
12 (i, Ni, pki, CERTi)← TCERT[i]
13 ((α1,Kα1) ∥ . . . ∥ (αn,Kαn))← Dec(pki,Ki, Cold)

14 For (j,Kj) in ((α1,Kα1) ∥ . . . ∥ (αn,Kαn)):
15 If Kj ̸= 0n:
16 K ← K ∪ {j : Kj}
17 For (i, Cdem, RP) in TLOG:
18 entry← RP

19 If {i : Ki} in K:
20 (i, Ni, pki, CERTi)← TCERT[i]
21 OS ∥ CL ← Dec(pki,Ki, Cdem)

22 entry← (OS ∥ CL ∥ RP)

23 T ← T ∪ (i ∥ entry)
24 Return (T , stclt)

Figure 8: Client-server history recovery for protocol Ψ as a
single algorithmH.

R((stclt, sid), (strp, sid
′)) :

01 If sid ̸= sid′ return ⊥

02 (TCERT, TLOG, TOLD, TKEM)← strp // RP challenge generation
03 For row in TCERT:
04 (i, Ni, pki, CERTi)← row
05 S ← S ∪ i

06 N ←$ {0, 1}n

07 (skA, CERTA, TCL)← stclt // Client response
08 (pksid, sksid,Ksid)← stclt[sid]

09 For (∗, sid, ∗, Ckem,i,sid,k) in TKEM:
10 Ki ← Dec(pkk, sksid, Ckem,i,sid,k)

11 For j in S:
12 If (i, j, ∗, ∗) not in TKEM:
13 Ckem,i,j,sid←$ {N,Ki}ssksid

pkk

14 LKEM ← LKEM ∪ (i, j, pksid, Ckem,i,j,sid)

15 stclt ← (skA, CERTA, TCL)

16 For row in LKEM: Add row to TKEM // RP receiving response
17 strp ← (TCERT, TLOG, TOLD, TKEM)

18 Return (stclt, strp)

Figure 9: Client-server re-encryption for our protocol Ψ as a
single algorithmR

UNLINKΠ(D)
b←$ {0, 1}
strp←$ Is
b′←$DO(strp)

Return (b′ = b)

InitClient
µ← µ+ 1

stµ←$ Ic

Login(c, OS, CL, RP)

If c > µ then Return ⊥
(sid, stc, strp)←$ L((stc, OS, CL), (strp, RP))

γ[sid]← c

Return sid, strp

Action(sid, OS, CL, RP)

If γ[sid] = ⊥ then Return ⊥
c← γ[sid]

(stc, strp)←$N ((stc, sid, OS, CL), (strp, sid, RP))

Return strp

Re-encryption(sid)
If γ[sid] = ⊥ then Return ⊥
c← γ[sid]

(stc, strp)←$R((stc, sid), (strp, sid))

Return strp

LoginChallenge(c0, c1, OS, CL, RP)

If c0 > µ or c1 > µ then Return ⊥
(sid, stcb , strp)←$ L((stcb , OS, CL), (strp, RP))

γ[sid]← cb
Return (sid, strp)

Figure 10: Logging server unlinkability (UNLINK) game
for a CSAL scheme Π and adversary D. Here O =
(InitClient,Login,Action,Re-encryption,LoginChallenge).

	Introduction
	Related Work
	Overview of Our Approach
	A Full CSAL Protocol
	Formal Treatment of CSAL
	Security Beyond Passive Adversaries
	Implementation and Evaluation
	Discussion
	Ethics and Open Science Policy
	Further Diagrams
	Algorithms Pseudocode
	Unlinkability Formalization

